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GENEVA MECHANISM

Indexing mechanisms are intermittent motion mechanisms that hold position alternately
with a timed, unidirectional motion of the output member. This is distinct from other types
of intermittent motion mechanisms such as dwell cams, which alternate forward and return
motion with holding position. The output member of an indexing mechanism always
advances in the same direction. Indexing mechanisms are practically important in such
applications as weaving looms, in advancing workpieces in repetitive manufacturing opera-
tions, and in many instrument mechanisms.

The most common type of indexing mechanism is a Geneva mechanism. Geneva mecha-
nisms come in many varieties, both planar and spherical. When advancing, it is kinematically
similar to an inverted slider crank. When holding position, it functions as a simple jour-
nal bearing.

The name Geneva mechanism originated because these mechanism were used in mechan-
ical watch and clock movements in the days when mechanical movements were dominant,
and Switzerland was the world center of the industry.

A simple example of a Geneva mechanism is shown in Fig. 5.28. The pin, P, on the

driving wheel engages the slots in the star-shaped driven wheel to advance the driven
wheel one-quarter turn for every rotation of the driving wheel. In between the advance
movements, the eccentric cylindrical journal surfaces cut into the star wheel engage with
the journal surface on the driving wheel to lock the star wheel in position, although the
driving wheel continues to rotate. The centerline of the slot must be tangent to the circle,
with radius r, described by the center of the pin at the position in which the pin enters or
leaves the slot. If this condition is not satisfied, there will be infinite acceleration at the
beginning of advancement and infinite deceleration at the end. This condition dictates that
the center distance of the two wheels should be V2r. It also requires that the outer radius
of the star wheel be r. The radius of the journal surfaces is flexible. The centers of the
cylindrical cutouts on the star wheel lie on a circle with radius V2r.
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Figure 5.28 A four-station Geneva mechanism. The output
member is the star wheel. The star wheel is advanced by the
pin in the input wheel. The star wheel is advanced one-quarter
of a revolution counterclockwise for every revolution of the
input wheel. The advance movement occurs during one-quar-
ter of a cycle with the star wheel being locked by the journal
surface on the input wheel for the other three-quarters of
the cycle.

During the advancing phase of the cycle, the mechanism is kinematically equivalent to
an inverted slider crank. One of its attractions is that it smoothly accelerates and then
decelerates the star wheel.

The motion of the star wheel may be analyzed by reference to Fig. 5.29. Resolving the
sides of the triangle whose vertices are the two shaft axes and the pin axis in the vertical

and horizontal directions:
rsin 8 = x sin ¢ 525
rcos@+xcos¢=\/§r (5.25)

Elimination of x by substitution from the first of these equations into the second gives

cosH+M=\/§
tan ¢

after canceling the common factor, r. Rearrangement of this expression gives

sin @

= 5.26
tan ¢ \/5 —cos @ ( )
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or

I sin 4 ) 527
¢ = tan (\/Q—cose (5:27)

Figure 5.29 Kinematic modeling of the Geneva mechanism
of Fig. 5.28. 0 is the angle of rotation of the driving wheel,
measured from the line of centers; ¢ is the angle of rotation
of the star wheel.

Differentiation of Eq. (5.26) with respect to time followed by simplification gives

: (V2 cos 6 — 1)
1+ tan? ) = V.25 0~ 1)
a ?) (V2 — cos 0)?
Substitution for tan ¢ from Eq. (5.26) gives, after rearrangement and simplification,
. (V2cos0—1 )
=9 —=— 528
? (3 —2V2cos 6 (5.25)

Differentiation again with respect to time gives, after simplification,

qg:é(\/icose—l)_gz V2 sin @
3 —-2V2cos 0 (3 — 2V2 cos 6)?

In the usual case in which the driving wheel is driven at constant angular velocity, the first
term disappears and

V2 sin @
(3 — 2V2cos 6)?

Equations (5.27), (5.28), and (5.29) are plotted versus 6 (in degrees) in Fig. 5.30; ¢ is
plotted in radians. Of course, ¢ varies from —45° to 45° during the advancement. The
angular velocity curve is actually ¢/6, and the angular acceleration curve is ¢/6.2

b= 6 (5.29)
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As can be seen from Fig. 5.30, the velocity and acceleration curves are smooth and well
behaved, but the derivative of the acceleration (jerk) is infinite at the beginning and end
of the advancement. So far, we have considered only the simplest version of the Geneva
mechanism: the four-station planar variety. The number of stations is the number of slots
in the star wheel and may, in principle, be any number, although the geometric lower limit
is three. There is also a practical upper limit at which the journal surfaces on the star
wheel become too short to effectively lock the output between advancements. The number
of pins on the driving wheel is usually one, but drivers with two or more are possible,

The essential geometry for relating the number of stations to the duration of the advance-
ment is shown in Fig. 5.31. Here « is the angle between the slot centerline and the line
of centers of the two wheels at the moment of engagement or disengagement of the pin.
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Figure 5.30 Position, velocity, and acceleration of the driven
wheel of the Geneva mechanism shown in Figs. 5.28 and 5.29
during the advancement phase of the motion cycle. The angu-
lar position of the star wheel is in radians. The angular velocity
and acceleration curves are respectively normalized to the
driver angular velocity and driver angular velocity squared.
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Figure 5.31 Critical geometry for a Geneva mechanism with
N stations. « is the angle between the slot centerline and the
line of centers at the moment of engagement of the pin; « is
half the angle between successive slots on the star wheel.
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That is, « is half the angle between successive slots, or 360°/(2N ), where N is the number
of stations. As already noted, the slot axis must be tangent to the circle traversed by the
pin center at these positions in order to avoid infinite accelerations. This determines the
relationship between N and the duration of the advancement, which is # — 2« by inspection
of the figure. Consequently, the duration of the advancement increases with the number
of stations, approaching a limit of 180° as the number of stations becomes very large.
This has the advantage of making the advancement motion more gentle but the possible
disadvantage of decreasing the duration of the period for which the output is stationary. The
trade-off between these effects and with the desirability of avoiding gearing downstream of
the indexing mechanism determine the choice of the number of stations. Gearing down-
stream of an indexing mechanism should be avoided due to the inaccuracy and uncertainty
in position introduced by necessary backlash in the gear train. Gear backlash is not usually
a problem if the gears are in uniform motion. However, the discontinuous motion output
from an indexing mechanism and consequent reversals of acceleration result in slapping
across the backlash interval. Hence, any speed reduction should be done upstream of the
indexing mechanism.

The number of stations also determines the ratio of the center distance of the wheel
axes to the pin radius and the outside diameter of the star wheel. By inspection of Fig.
5.31, the former ratio is 1/sin « and the latter is 1/tan «.

Noting that & = /N, Eqgs. (5.27)-(5.29), respectively, become for this more general case:

— pan-l sin « sin 6

¢ = tan (l — sin a cos 0) (5.30)
S cos # — sin &

¢=fsine (1 + sin’ac — 2 sin & cos 0) (31
. ) . 2 .

b= -6 sSIn @ Cos” ¢ Sin 0 (5.32)

7 (1 + sin®a — 2 sin a cos 0)?

Spherical Geneva mechanisms allow indexed motion transfer between angulated shafts.
More important, a large number of stations can be accommodated without losing positive
locking action between advances.

Example

An indexing drive is to be driven by a synchronous electric motor turning at 360 rpm (the
speed of a synchronous motor is locked to the alternating-current cycle frequency and so is
essentially constant). The single pin driver is to turn a six-station Geneva wheel. Compute
the following:

(a) The number of advances per second

(b) The angle through which the Geneva wheel advances during every revolution of the
driving wheel

(c) The duration in seconds of the dwell in the output motion

(d) The peak angular velocity of the output shaft

(e) The peak angular acceleration of the output shaft
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Solution

(a) The number of advances per second is the number of revolutions of the driver per
second, which is 360/60 = 6.

(b) The angle advanced is 2a = 360°/N = 60°, with N, the number of stations, being 6 in
this case. Hence o = 30°.

(c) The fraction of the cycle during which the output is locked (dwelling) is

_ 180 — 2a

A 360

with a in degrees giving A = 1/3. The duration of the complete cycle is 7 = 1/6 s from
part (a). Hence the duration of the dwell is

T=AT=1/18 =0.0555s

(d) Referring to Eq. (5.32), ¢ is at its maximum value when 8 = 0. Also, for N = 6,

sina = 0.5

so, substituting this value and # = 0 in Eq. (5.31),
brax = 0
6 is the angular velocity of the drive wheel, so
=27 X 6 =37.70rad/s
Therefore,
max = 37.70 rad/s

Note that ¢ is positive in the CCW direction while @ is positive in the CW direction
(see Fig. 5.29). Therefore the positive values for both ¢ and 6 indicate that the star
wheel rotates in the opposite direction to the driver.

(e) It is necessary to determine the value of # that maximizes ¢. A straightforward way
to do this would be to plot Eq. (5.32) in the same way as in Fig. 5.30, but with a =
30°. ¢ and the angle @ at which it occurs could then be read directly from the plot.

Alternatively, we can differentiate Eq. (5.32) to identify the extrema of ¢. Noting
that @ is constant,

b — 6 si X : : L
[ji_(tb =0+ sinzasin;s?r?ixcéos 5y {(1 + sina — 2 sin & cos 6) cos § — 4 sin a sin’f}

and so

when
(1 + sin®a) cos 6 — 2 sin a cos? @ — 4 sin & sin’@ = 0
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Replacement of sin’6 by 1 — cos”6 and rearrangement of the equation give
cos’d+ycos—2=0
where

1 +sina

2 sin o (5:33)

The preceding equation can be treated as a quadratic equation in the variable cos 6.
Solving for cos 6,

-y Vyr +8
2

cos @ =

It is possible to show that only the positive value of the square root gives a value of
cos 6 with magnitude between 0 and 1 in the allowable range of a, 0 < o < 60°, so
only that solution is valid. Hence, ¢ is at a maximum when

_ A/ ny2
'( 74'2V +8) (5.34)

f == cos

where the =+ sign now comes from inversion of the cosine, not from the quadratic
solution. Equations (5.33) and (5.34) are of general validity for locating the maximal
values of ¢. In the present case, substituting sin o = 0.5 in Eq. (5.33) gives

y=125

Hence Eq. (5.34) gives
6= +22.90°

‘Substitution of these values into Eq. (5.32) gives
L +1.372

@

Hence, since § = 6 X 27 = 37.70 rad/s, the peak angular acceleration 1s 1,950 rad/s’.
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